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A study on the use of  momentum interpolat ion method and h ighe r -o rde r  bounded  convect ion 

schemes for s imulat ion of  osci l la tory natural  convect ion of  l iquid metal in a square cavity is 

presented. The or iginal  Rhie and Chow scheme is modif ied tbr unsteady flows to obta in  the 

convergcd solut ions which arc independcnt  of  the t ime step size. Two h ighe r -o rde r  bounded  

convect ion schemes, S O U C U P  and C O P L A  are evaluated,  together with H Y B R I D  and Q U I C K ,  

to test their capabi l i ty  for predict ing the osci l la tory natural  convection.  The ca lcula t ions  are 

performed tbr  ( ; r=107,  P r=0 .005  employing  4 2 •  and 8 2 •  nonuni form grids. The 

C O P L A  and Q U I C K  schemes have shown the capabi l i ty  of  predict ing the osci l la tory  mot ion  

while the H Y B R I D  and S O U C U P  schemes have not. 

Key Words : Momentum Interpola t ion  Method,  Higher -Order  Bounded Convect ion Schemes, 

Osci l la tory  Natura l  Convect ion,  Liquid  Metal.  
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: Coefficient  in the discret izat ion 

equat ion 

: Source term in the discret izat ion 

equat ion 

: Specific heat  

: Coefficients of  pressure terms 

: Geometr ic  in terpolat ion factor 

: Grav i t a t iona l  accelerat ion 

: G ra sh o f  number  

: Conduct iv i ty  

: Length of  the cavity 

: Nusselt  number  

: Pressure 

: Prandtl  number  

: Linear ized source term 

: Tempera ture  

: T ime  

: Car tes ian velocity components  

: Car tes ian coord ina te  system 

Greek symbols 
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a : Thermal  diffusivity 

a~, a~ : Relaxa t ion  factors 

fl : V o l u m e t r i c  coefficient of ther- 

mal expans ion  

zJt : T ime step 

d V : Volume 

r : Var iable  

0 : Dimensionless  temperature  

,u : Viscosity 

: Kinemat ic  viscosity 

p : Density 

Superscripts 
l - 1  : Previous i terat ion level 

n - -1  : Previous t ime step 

u,  v : Per ta ining to u, v velocity com- 

ponents 

Subscripts 
C : Per ta ining to cold 

e, w, n, s : East, west, north,  south faces of  

control  volume 

E ,  W, N ,  A" : E a s t ,  west, north,  south neigh- 

bors of  grid poin t  P 

H : Per ta ining to hot 

nb : Per ta ining to neighbor ing point  
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P 
U, 

: Pertaining to grid point P. 

Pertaining to u, v velocity com- 
ponents 

1. Introduct ion  

Natural convection of liquid metal has become 
an important topic due to its applications in 

material processing, semiconductor crystal 

growth and decay heat removal in a liquid metal 
reactor. An understanding of the natural convec- 

tion in a liquid metal reactor is very important in 
securing the structural integrity of the reactor. 

The natural convection of  liquid metal has not 
been well understood. The flow is highly non- 

linear, and the shape of  streamlines is nearly 
circular. Numerical false diffusion occurs when 

the flow is oblique to the rectangular shape grid 

lines. Low-Prandt t -number  fluids have a ten- 
dency to oscillate at relatively low Rayleigh 

numbers. Some of the numerical issues associated 
with the prediction of oscillatory natural convec- 
tion are the treatment of an unsteady term, the 
choice of a convection scheme to avoid the numer- 
ical false diffusion, and the use of momentum 
interpolation method for unsteady flows involv- 
ing large body forces. Cless and Prescott (1996) 

have studied the treatment of  an unsteady term. 
They have tested the implicit and semi-implicit 
schemes in advancing the solution in a time 
domain. The present study deals with the remain- 

ing two issues. 
Most of previous works used the finite element 

method (Gresho and Upson, 1983), the stream 
function-vorticity formulation (Kamakura and 
Ozoe, 1996), and the staggered grid based the 

finite volume method (Mohamad and Viskanta, 

1991) for the simulation of oscillatory natural 
convection of liquid metal. The nonstaggered, 
momentum interpolation method of Rhie and 

Chow (1983) is used in the present study. After 
Rhie and Chow proposed a scheme based on the 

momentum interpolation method, it has been 
widely used due to its simplicity of algorithm, 
especially when the numerical grids were nonor- 

thogonaL However, the original Rhie and Chow 
scheme did not take into account the presence of 

underrelaxation factors in the discretized momen- 
tum equations. Majumdar (1988) found that the 
converged solution was relaxation factor-depen- 
dent and proposed a remedy for this problem. In 

the present study we propose that a further 
modification of the Rhie and Chow ~heme is 

necessary for the Simulation of  unsteady flows to 
obtain  the converged solution which is indepen- 
dent of the time step size. 

Mohamad and Viskanta (1989) evaluated four 

different convection schemes for natural convec- 

tion of  low Prandtl number fluids. They conclud- 
ed that the first order schemes ware incapable of 
predicting the oscillatory convection and recom- 
mended the central difference scheme for transient 

simulation. Subsequent study of  Mohamad and 
Viskanta (1991) and Cless and Prescott (1996) 

also used the central difference scheme for the 

transient natural convection of  low Prandtl num- 

ber fluids. However, the central difference scheme 
is unstable when the grid Peclet number is high 
and is not well used in the general purpose code. 

Mohamad and Viskanta (1989) used this scheme 
in the transient calculations using a very small 

time step. 
The higher-order schemes such as the central 

difference scheme, the QUICK scheme (Leonard, 

1979), the second-order upwind scheme (Shyy, 
1985) and the skew-upwind scheme (Raithby, 
1976) have been successful in increasing the 
accuracy of the solution, but all suffer from the 

boundedness problem; that is, the solutions dis- 
play unphysical undershoots and overshoots in 

the regions of steep gradient, which can lead to 
numerical instability. In the practical turbulent 
calculations, the undershooting behavior of 

higher-order convection schemes may produce 
the negative value of turbulent quantities that 
should be always positive, such as the turbulent 
kinetic energy and the rate of  dissipation of turbu- 
lent kinetic energy. Such a phenomenon can cause 

the numerical instability and occur in the analysis 

of turbulent natural convection or mixed convec- 
tion of  liquid metal flows in a liquid metal reac- 

tor. 
Many higher-order bounded schemes, such as 

the SOUCUP scheme (Zhu and Rodi, 1991), the 



Use of  Momentum Interpolation Method and Evaluation of  Higher-Order Bounded... 423 

HLPA scheme (Zhu, 1992), the SMARTER 

scheme (Shin and Choi, 1992) and the COPLA 

scheme (Choi et al. , 1995), have been developed 

to resolve the aforementioned boundedness prob- 

lems. Recently Choi and Lee (1997) have evaluat- 

ed these higher-order bounded schemes and have 

shown that the HLPA,  SMARTER and COPLA 

schemes resulted in nearly the same solution 

behaviors in both accuracy and convergence, 

while the SOUCUP scheme is more diffusive than 

the other schemes. Thus, it suffices to test the 
SOUCUP and COPLA schemes in the present 

study. 

In the present study, the higher-order  bounded 

convection schemes are evaluated for transient 

oscillatory natural convection of a liquid metal. 

Among the various h igher -order  bounded 

schemes, the SOUCUP scheme and the COPLA 

scheme are chosen in the present study. The 

SOUCUP scheme is a composite of  second-order  

upwind, central differencing and first-order up- 

wind schemes and is second-order  accurate, The 

COPLA scheme is a th i rd-order  accurate bound- 

ed scheme that employs the QUICK scheme in a 

certain range in the normalized variable diagram. 

The solutions of HYBRID scheme (Spalding, 

1972) and QUICK scheme are also included for 

comparison. 

The objectives of  the present study are ; (1) a 

proper formulation of  the Rhie and Chow scheme 

for unsteady flows, (2) evaluation of higher~ 

order bounded convection schemes for simulation 

of oscillatory natural convection of liquid metal. 

The numerical results are compared with each 

other. 

2. M a t h e m a t i c a l  F o r m u l a t i o n  

2.1 Governing equations 
We consider a t ime-dependent,  two-dimen- 

sional natural convection of liquid metal in a 

square cavity, shown in Fig. 1. The isothermal 

vertical walls are kept at constant but different 

temperatures, where the upper and lower walls 

are adiabatic. Initially the fluid is at the cold wall 

temperature. At time t=O, the temperature of one 

of the vertical walls is raised to a constant value 

Y 

t__. 
Fig. 1 
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L 

Schematic of the cavity and coordinate sys- 
tem. 

TH > Tc. The fluid is assumed to be Newtonian 

with constant properties and the Boussinesq 

approximation is applied. The governing equa- 

tions for the transport of  mass, momentum and 

energy can be written as 

3 
3x, ( p u , ) = 0  ( l)  

3P , 3 / 
- U y x T  } 

+ gg,5 ( T - To) (2) 

Using L, (L /g l~AT)  ~/=, (gl~ATL) t/2, and A T  
= T . -  T~ for the length, time, velocity and tem- 

perature scales, respectively, the non-dimen- 

sionalized governing conservation equations can 

be written as 

3u 4- 3v = 0  3x 3y (4) 

3u 3u 3u 3P 
+- u ~ - +  v - 4t 3y 3x 

1 [3~U_32U'~  

3v u 3v + 3v 3P 
at F 3x v Oy -- 3y 

1 [32v . 3 2 v \ .  
- ~ ~ ~  #" + 0 (6) 

80 u 3 0  + v 3 0  1 { i~0 + 330 
f l i t -  ~ -  or,/ TkTU- 7} 

(7) 

where the Grashof  and Prandtl  numbers are 

defined as 
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N 

W. ~ ,w s'P e ~ 

Fig. 2 Typical control volume and node notation. 

G r =  g~--~ TIff (8) 

P r =  v (9) 

and 0 - ( T - T 0 ) / , d T ,  The initial and boundary 
conditions are as follows ; 

u=v=O-- -O t = 0  
u = v = 0  on the walls t > 0  

o(0, y ) = l ,  0( l ,  y ) - - 0  t > 0  (~0) 

30 = 0  at y = 0 ,  1 t > 0  
8y 

2.2 D i s e r e t i z a t i o n  of  transport  equat ions  
The computational domain is subdivided into 

finite number of control volumes as shown in Fig. 

2 and all the variables are stored at the geometric 

center of each control volume cell. The transport 
equations are discretized using the finite volume 
approach (Patankar, 1980). The governing equa- 

tions are integrated over the control volume and 
the convection terms are approximated by four 

different schemes. The unsteady term is treated by 
the backward differencing scheme. The resulting 

algebraic equation for a variable 

APCP =AeCE +AwCw +ANr +AsCs 
+b~ (11) 

where bo is a source term for variable r 

2.3 M o m e n t u m  interpolat ion method 
In the Rhie and Chow scheme, the momentum 

equations are solved implicitly at the center of  the 
cell. The discretized momentum equations for 
velocity components can be written as 

up = (H=) ~ + (D=) p ( P = -  P~) p + (Eu) pu# -1 
+ ( 1 - a ~ )  uP' -~ (12) 

v~= (H~),.+ ( D . ) p ( P ~ - P . ) p +  (E~)~.v~ -~ 
+ ( 1 - a o )  v~ '~ (13) 

where 

H~ = a. [ZA~.~u.b + (SYA V) ]/A~ 

IL = ao [ ZAZ~v~b + ( S gzl V) ] I AF 
D~ = auAy/A~ 

D~ = a~zlx / A~ 
a .pd  V / a  

E , =  ,dr / ~ e  

�9 a ~  ) z l V  �9 

E~=...---~t / A f  

A p -  Z A ~ b -  Sf, A V  +- 

A f = N A ~ b - S ~ A V ~  M V  
- All 

14) 

15) 
16) 

17) 

18) 

19) 

(20) 

(21) 

and au, av are the underrelaxation factors for u, v 
velocity components and the superscripts n--1,  l 

- 1  denote the previous time step and iteration 
level, respectively. The discretized momentum 
equations for the velocity component at the cell 
face, for example at the east face, can be written as 

follows. 

ue = (H,,) e+ (D~)~(t ' , ,-12,) + (E~)~,ug -1 
+ (1--a~) u~ " (22) 

In the presenl modified Rhie and Chow's 

scheme, this velocity component is obtained 
explicitly through the interpolation of momentum 

equations for the neighbouring cell-centered 
velocity components. Following assumptions are 

introduced to evaluate this cell face velocity com- 

ponent. 

(H~)e~ f+( t t~ )E+ (1 - / [ )  (It~)p (23) 

i ~ f +  q- ( l - - f + )  (24) 
(AD ~ ~ (AD e 

where f+ is the geometric interpolation factor 
defined in terms of distance between nodal points. 
Similar assumptions can be introduced for evalua- 
tion of the velocity component at the north face. 

Using the above assumption, Eq. (22) can be 

written as follows, with the E~ term expressed 
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explicitly. 

u,=E/:u~ + (1-  f ; )  u; + (D~)~(Pp-15:) 
-fe+. (Du)z(Pw-P~)E 
- ( I - f ~ )  (Du)~(Pw-P~)~)J 
+ (1 -ce~) [ u g - l - f : u ~  - 1 -  ( 1 - f e  +) u~-l] 

+ ~ . F  ( A v ) ~  ._, . + ( A v ) ~  . 
z l t l  r A ~ - u ~  - I~  ~ u E -  t, ~ P] e \ P I E  

- ' 1  -+' (AV)~ un_,] (25) 

The expression in the first bracket of the right 

hand side is the original Rhie and Chow's 

scheme. Majumdar (1988) has revealed that the 

converged solution was relaxation factor-depen- 

dent if the expression in the second bracket was 

omitted. For  the same reason, omission of the last 

bracket leads to a converged solution which is 

dependent on the time step size. To the present 

authors'  knowledge, nobody has mentioned in the 

literature the last term, which comes from the 

unsteady term. Although the above two terms are 

relatively small in the practical calculations and 

do not influence the accuracy of the converged 

solution significantly, this feature that the conver- 

ged solution is dependent on the relaxation fac- 

tors and time step size is obviously undesirable. 

Equation (25) indicates that the previous time 

step and the iteration values of cell face velocity 

components as welI as those of centered velocity 

components should be stored in order to obtain 

the converged solutions which are independent of 

time step size and relaxation factors. 

3. R e s u l t s  and D i s c u s s i o n s  

The modified Rhie and Chow scheme described 

in the previous section is implemented in a gen- 

eral purpose code designed to solve the fluid flow 

and the heat transfer in complex geometries. The 

SIMPLE (Patankar, 1980) algorithm is employed 

for pressure-velocity coupling. 

The calculations are performed for Gr = 10 r, Pr 

=0.005 employing 42 x 42 and 82 x 82 nonunifor- 

m grids. The numerical grids used in the present 

study are the same as those reported in Hortmann 

et al. (1992). Dimensionless time step of 1/80 is 

used for all calculations and this time step size is 

small enough to resolve the oscillatory transient 

behaviour. Iterations are pertbrmed for each time 

step until the maximum of the absolute sum of 

dimensionless residuals of momentum equations, 

energy equation and pressure correction equation 

is smaller than 10 -~. Relaxation factor of 0.7 is 

used for momentum equations and 1.0 is used for 

the energy equation. It takes about 72 hours on 

our computer (Pentium Pro 200MHz) to obtain a 

transient solution up to dimensionless time of 37. 

5 when the QUICK scheme with 82 x 82 grids are 

employed. 

Mohamad and Viskanta (1991) have solved 

this problem using the central difference scheme. 

Three different numerical grids, 42 X42, 62 x 62, 

82 X 82, were tested and they have shown that the 

solution by 82 X 82 grids was nearly grid indepen- 

dent. The magnitude and trend of  average Nusselt 

number at the hot wall by the QUICK scheme 

employing 82x82  grids is very similar to their 

grid independent solution and this solution can 

be considered as a nearly grid independent solu- 

tion. Thus, further grid refinement tests are not 

performed due to requirement of excessive 

computational efforts. The numerical solutions by 

the other schemes are evaluated using this solu- 

tion as a basis solution. 

During the reviewing process, one reviewer 

questioned that the present problem ( G r ' -  10 7, Pr 

=0.005) could be considered as a laminar flow. 

To present author's knowledge, the stability study 

for the natural convection of  liquid metal in a 

cavity for the case of Pr=0.005 is not reported in 

any literature. Muller et al. (1984) has reported a 

stability study for natural convection of liquid 

metal Ga (Pr=0.02) in a cylinder. They have 

explained the development of  natural convection 

of liquid metal in four stages, no flow, steady 

laminar flow, unsteady periodic laminar flow and 

unsteady turbulent flow. The stability diagram by 

Muller et al. (1984) and the present calculated 

results show that the present problem belongs to 

the stage of unsteady periodic laminar flow and 

can be solved by laminar flow equations as was 

done by Mohamad and Viskanta (1991) and 

Cless and Prescott (1996). 

Figure 3 shows the transient average Nusselt 
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Fig. 3 
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Transients of average Nusselt number at the 
hot w a l l ( G r =  10 r Pr = 0.005) " (a) 
HYBRID, (b)SOUCUP, (c)QUICK, (d) 
COPLA. 

number at the hot wall predicted by four different 

convection schemes. We can observe that the 

HYBRID and SOUCUP schemes result in the 

steady state solutions. These two schemes are not 

capable of predicting the oscillatory behaviour, 

even if the numerical grids are increased to 82 • 

82. T h e  HYBRID scheme underpredicts the aver- 

age Nusselt number severely. The prediction does 

not improve much with grid refinement. The 

SOUCUP scheme predicts the average Nusselt 

number much better than the HYBRID scheme, 

however, it fails to predict the oscillatory behav- 

iour. It is noted that the SOUCUP scheme is a 

composite of upwind, second order upwind and 

central difference scheme and is second order 

accurate. The QUICK and the COPLA schemes 

predict the oscillatory behaviour of the average 

Nusselt number well. These predic t ions  by the 

QUICK and the COPLA schemes are very similar 

to those reported by Mohamad and Viskanta 

(1991) which have been obtained by the central 

difference scheme. The predictions by both 

schemes are nearly the same, while the QUICK 

scheme results in slightly better results when the 

grid is coarse (42•  It is not a surprising 

result if we note that the bounded scheme 

COPLA employs the QUICK scheme in a certain 

range in the normalized variable diagram. The 

results show that the bounded scheme COPLA is 

as accurate as the QUICK scheme and the 

QUICK scheme does not show wiggling in the 

present problem. 

Figure 4 and 5 show the predicted streamlines 

and isothermal lines by the HYBRID and 

SOUCUP schemes in the final stages of steady 

state. Only the results for 82 • 82 grids are present- 

ed. The streamlines predicted by the HYBRID 

scheme are rather square shaped compared with 

those by the SOUCUP scheme. The HYBRID 

scheme predicts rather large vortices at the four 

corners and it is found that these vortices are 

weak and do not change with time. The stream- 

lines predicted by the SOUCUP scheme are near- 

ly circular. There are two very small vortices at 

upper-r ight  and bottom-left  corners. It is also 

checked that these vortices do not vary with time. 

Differences in flow structure between the two 
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(a) 

(b) 

Fig. 4 Streamlines and isotherms predicted by 
HYBRID(Gr--107, Pr=0.005) : (a)stream- 
lines, (b) isotherms. 

schemes affect the temperature distributions. The 
temperature distributions predicted by the two 
schemes are significantly different. 

Figure 6 shows the unsteady motion of stream- 

lines during one cycle of oscillation predicted by 
the COPLA scheme employing 82 • 82 grids. The 

streamlines reveal nearly periodic growth and 

decay of corner vorlices. The evolution af  corner 
vortices during a cycle of oscillation can be 
described as follows. The evolution of vortices 
begins at the upper-right and bottom--left corners 

where the temperature gradient is large (t=35. 

(a) 

(b) 

Fig. 5 Streamlines and isotherms predicted by 
SOUCUP(Gr=107, Pr---0.O05) : (a)stream- 
lines, (b) isotherms. 

3135). The upper-right and bottom-left vortices 
appear first, and the vortices at the other corners 
also evolve (t=35.4760). Then the strength of the 

vortices increases (t=35.6510) and the corner 
vortices shear with the main vortices (t=35. 

8010). The strength of the corner vortices is 

weakened and split into small vortices (t=-35. 

9510). Then the corner vortices disappear and 
evolve into main vortices 0=35.1510).  This ends 
one cycle of the evolution process. When these 
predictions are compared with the predictions of 
streamlines by the HYBRID and SOUCUP 
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(a) (b) 

(c) (d) 

Fig. 6 

(c) (l) 

Streamlines during one cycle of oscillation predicted by COPLA ( G r =  l07, Pr:-O.005) : (a)t=35, 
1510, (b)t.-.-35.3135, (c)t=35.4760, (d)t=35.6510, (e)t--35.8010, (I)t=35.9510. 

schemes, the oscillation of the average Nusselt 

number is due to the unsteady motion of corner 
vortices. 

Figure 7 shows the plots of isothermal lines 
during one cycle of oscillation predicted by the 
COPLA scheme employing 82•  grids. The 
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(a) (b) 

Fig. 7 

(c) (d) 

Isotherms during one cycle of oscillation predictred by C O P L A ( G r = I 0  r, Pr=0.005) : (a)t=35, 
1510, (b)t=35.4135, (c)t--35.6510, (d)t=-35.8760. 

temperature field oscillates, however, the magni- 

tude of temperature oscillation is small and no 

significant change during a cycle is observed in 

the contour plot. 

The plots of streamlines and isotherms predicl- 

ed by the QUICK scheme are not presented here 

since they are essentially the same as those of the 

COPLA scheme, which can be conjectured from 

the results shown in Fig. 3 ( c ) -  (d). 

4. Conclus ions  

The use of the momentum interpolation method 

and the evaluation of higher-order bounded con- 

vection schemes for the simulation of oscillatory 

natural convection of low Prandtl number fluids 

are studied. A proper formulation of Rhie and 

Chow scheme for unsteady flows is presented. 

Four convection schemes are tested For the natu- 

ral convection of liquid metal in a square cavity 

in the case of G r =  10 r, Pr=0.005 by employing 

42 •  and 82 • 82 nonunilbrm grids. The results 

of numerical experiments conducted by the pres- 

ent study show that the HYBRID and the 

SOUCUP schemes should not be used for the 

prediction of oscillatory natural convection of 

liquid metal since they fail to predict the experi- 

mentally observed oscil latory motion. The 

QUICK scheme and the central difference scheme 

tested by Mohamad and Viskanta (1989) are 



430 Seok Ki Choi, Yong Bum Lee, Yong Kyun Kim and Ho Yun Nam 

capable of predicting the oscillatory motion. 

However, these two schemes are unbounded and 

can cause numerical instability in the turbulent 
flow simulations. The results of  present study and 

those ofChoi  et al. (1995) show that the COPLA 
scheme is as accurate as the QUICK scheme, 

while preserving the boundedness of the problem. 
Thus, the higher-order bounded scheme like 
COPLA scheme can be used confidently for 
practical simulation of both laminar and turbu- 

lent natural convection of liquid metal such as the 
decay heat removal in a liquid metal reactor or 
the thermohydraulic analysis of severe accident in 
a nuclear power plant (Lee and Park, 1998). 
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